首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2074篇
  免费   170篇
  国内免费   108篇
  2023年   22篇
  2022年   36篇
  2021年   42篇
  2020年   45篇
  2019年   47篇
  2018年   56篇
  2017年   54篇
  2016年   47篇
  2015年   67篇
  2014年   108篇
  2013年   148篇
  2012年   71篇
  2011年   116篇
  2010年   92篇
  2009年   132篇
  2008年   118篇
  2007年   136篇
  2006年   95篇
  2005年   125篇
  2004年   69篇
  2003年   75篇
  2002年   83篇
  2001年   83篇
  2000年   63篇
  1999年   66篇
  1998年   45篇
  1997年   38篇
  1996年   38篇
  1995年   24篇
  1994年   34篇
  1993年   23篇
  1992年   25篇
  1991年   13篇
  1990年   20篇
  1989年   6篇
  1988年   17篇
  1987年   14篇
  1986年   11篇
  1985年   14篇
  1984年   11篇
  1983年   2篇
  1982年   10篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1950年   1篇
排序方式: 共有2352条查询结果,搜索用时 78 毫秒
1.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
2.
 Using two molecular data sets, the plastid atpB-rbcL intergenic spacer region and the nuclear ribosomal internal transcribed spacer regions (ITS), the taxonomic affinities of two newly available Anemone species from the Southern Hemisphere were tested. From previous work based on morphology and geographic distribution, it was assumed that A. tenuicaulis from New Zealand was most closely related to the Tasmanian A. crassifolia, whereas the affinity of A. antucensis from Chile and Argentina was regarded as uncertain. Analyses of molecular sequence data from these and 18 other species of Anemone s.lat. (with Clematis as outgroup) result in trees largely congruent with past analyses based on morphology and plastid restriction site data. They strongly support A. richardsonii and A. canadensis (with boreal distributions in the Northern Hemisphere) as paraphyletic to a well supported Southern Hemisphere clade consisting of A. antucensis and A. tenuicaulis. This group of four species is part of an otherwise predominantly Northern Hemisphere assemblage (subgenus Anemonidium s.lat., chromosome base number x=7), including A. narcissiflora, A. obtusiloba, A. keiskeana and A. (=Hepatica) americana. All other austral species included in the present sampling, A. crassifolia (Tasmania), A. knowltonia (=Knowltonia capensis), and A. caffra (both South African), form a separate clade, sister to A. (=Pulsatilla) occidentalis and other Northern Hemisphere anemones (subgenus Anemone s.lat., x=8). Possible phytogeographical links of the Southern Hemisphere species are discussed. Received April 23, 2001 Accepted October 4, 2001  相似文献   
3.
Aeschynanthus Jack, an epiphytic genus with c.160 species, is widespread in SE Asia. We selected 50 species for ITS nrDNA sequencing, to include all biogeographic areas and all infrageneric groupings, which are currently based on seed morphology. Some species were sequenced directly from PCR product; others cloned because of ITS length polymorphisms. The clone sequences were analysed individually and combined in an elision matrix. Results extend earlier findings that Aeschynanthus is divided into two clades, one occurring primarily in mainland SE Asia and the other in Malesia. This pattern is interpreted as indicating an ancient vicariance event followed by dispersal and plate fusion. Clade I has straight or clockwise spiral orientation of the testa cells and clade II anticlockwise spiral orientation. In clade I some species of section Microtrichium form a basal group with other sections being polyphyletic or paraphyletic. In clade II the monophyletic section Aeschynanthus is nested within the paraphyletic basal Microtrichium. Received February 8, 2001 Accepted June 8, 2001  相似文献   
4.
Phylogenetic relationships of Genista and related genera (Teline, Chamaespartium, Pterospartum, Echinospartum, Ulex, Stauracanthus and Retama) were assessed by the analysis of sequences of the nrDNA internal transcribed spacer (ITS region), and the cpDNA trnL-trnF intergenic spacer. The tree obtained by combining both sets of data indicates the existence of three lines of diversification within Genista, that correspond to three subgenera: Genista, Phyllobotrys and Spartocarpus, however, each of these lineages encompass also species of the related genera Echinospartum, Teline, Retama, Chamaespartium, Pterospartum, Ulex, Stauracanthus. The molecular data do not support division of these subgenera into taxonomical units at the sectional level; only sections Genista and Spartocarpus are monophyletic groups. The sequences of both regions are also informative at the specific level, grouping morphologically related species (e.g. the G. cinerea aggregate). The molecular data have also helped to clarify the position of taxa whose relationships were not well established (e.g. G. valdes-bermejoi). The relationships of related genera that belong to the Genista lines of diversification have also been investigated. Echinospartum splits into two separate clades matching the separation of two ecological and caryological differentiated groups. Teline also forms two groups, both placed near to Genista subgenus Genista, but that separated from the main core of the group. Retama, morphologically well differentiated from Genista, is close to Genista subgenus Spartocarpus. Chamaespartium and Pterospartum do not form a monophyletic group. Chamaespartium is closer to Genista subgenus Genista, whereas Pterospartum stands close to: 1) Genista subgenus Spartocarpus (particularly, sect. Cephalospartum); and 2) the Ulex-Stauracanthus clade (a terminal derivative of Genista subgenus Spartocarpus). Cases of incongruence (e.g. Echinospartum, Chamaespartium, Teline) between the trees obtained from the two molecular markers, may be indicating hybridisation and/or introgression between different lines of Genisteae.  相似文献   
5.
The endemic elaphoglossoid ferns, Elaphoglossum dimorphum, E. nervosum and Microstaphyla furcata of St Helena, form a closely related group within section Lepidoglossa when analysed phylogenetically using sequences from the chloroplast trnL intron (partial) and trnL-F intergenic spacer. Microstaphyla furcata, traditionally placed in its own genus, is clearly shown to belong to Elaphoglossum confirming the previous transfer of this species to Elaphoglossum as E. bifurcatum. There is hardly any trnL-F sequence divergence between the species, in fact sequences of E. nervosum and E. dimorphum are identical. These results are consistent with the possible origin of E. dimorphum as a hybrid between E. bifurcatum and E. nervosum or with the view that the three species are the result of a recent radiation. The potential conflict between phylogenetic and morphological distinctness in determining species conservation priorities is discussed.  相似文献   
6.
7.
Morphologically intermediate plants between Weigela hortensis (Siebold & Zucc.) K.Koch and W. maximowiczii (S.Moore) Rehder have been found in Miyagi and Yamagata Pref., northern Japan. Quantitative character analyses of flowers, pollen stainability and molecular analyses indicated that the intermediate plants were hybrids of those two species. This is the first record of an intersectional hybrid with W. maximowiczii (sect. Weigelastrum ) as one of the parent species. The morphological differences among hybrid individuals imply the possibility of backcrosses or formation of second or later generations of hybrids, although those may be quite rare because of a low frequency of viable pollen grains. Causes of hybridization between two distantly-related species in Weigela are discussed. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 369–380.  相似文献   
8.
 Phylogenetic relationships of Cytisus and allied genera (Argyrocytisus, Calicotome, Chamaecytisus, Cytisophyllum, and Spartocytisus) were assessed by analysis of sequences of the nrDNA internal transcribed spacer (ITS) and the cpDNA trnL-trnF intergenic spacer. Genera of the Genista-group (Chamaespartium, Echinospartum, Genista, Pterospartum, Spartium, Teline and Ulex) were included to check the position of Cytisus species transferred to Teline. The tree obtained by combining both sets of data indicates that the Genista and Cytisus groups form two separate clades. Cytisus heterochrous and C. tribracteolatus are more closely related to the Cytisus-group, thus their transfer to Teline is not supported by molecular data. Cytisus fontanesii (syn. Chronanthos biflorus) groups with Cytisophyllum sessilifolium and Cytisus heterochrous within the Cytisus-group. Similarly, Argyrocytisus battandieri falls within the Cytisus-group as a well differentiated taxon. All these taxa seem to have early diverged from the Cytisus-group. Their taxonomic rank should be reconsidered to better reflect their phylogenetic separation from Cytisus. On the contrary, Chamaecytisus proliferus and Spartocytisus supranubius enter in the main core of Cytisus, and they should better be included in sections of Cytisus (sect. Tubocytisus and Oreosparton, respectively). Sect. Spartopsis is not monophyletic and the position of several species, currently included in this section, deserves reevaluation: C. arboreus aggregate is closely related to C. villosus (sect. Cytisus) and to Calicotome; C. striatus is closely related to Cytisus sect. Alburnoides; and the position of C. commutatus (incl. C. ingramii) remains unclear. The relationships and positioning of several minor taxa (C. transiens, C. megalanthus, and C. maurus) are also discussed. Received November 22, 2001; accepted March 16, 2002 Published online: October 14, 2002 Addresses of the authors: Paloma Cubas (e-mail: cubas@farm.ucm.es) and Cristina Pardo (e-mail: cpardo@farm.ucm.es), Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, E-28040 Madrid, Spain. Hikmat Tahiri Faculté des Sciences, Université Mohammed V, BP 1014 Rabat, Morocco (e-mail: tahiri@ fsr.ac.ma).  相似文献   
9.
Phylogenetic relationships of 18 Thlaspi s.l. species were inferred from nuclear ribosomal internal transcribed spacer (ITS) sequence data. These species represent all sections of the basic classification system of Schulz primarily based on fruit characters. The molecular phylogeny supported six clades that are largely congruent with species groups recognized by Meyer on the basis of differences in seed coat anatomy, i.e. Thlaspi s. s., Thlaspkeras, Moccaea {Raparia included), Microthhspi, Vania and Neurotropy. Some of these lineages include species which are morphologically diverse in fruit shape (e.g. Thlaspi s. s.: T. arvense - fruits broadly winged, T. ceratocarpum - fruits with prominent horns at apex, T. alliaceum - fruits very narrowly winged). Furthermore, the same fruit shape type is distributed among different clades. For instance, fruits with prominent horns at apex are found in Thlaspi s. s. ( T. ceratocarpum) and Thlaspiceras (T oxyceras). These results clearly indicate convergence in fruit characters previously used for sectional classification in Thlaspi s. l.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号